An Efficient Approximation-elimination Algorithm for Fast Nearest-neighbor Search

نویسنده

  • V. Ramasubramanian
چکیده

In this paper, we present an efficient algorithm for fast nearest-neighbour search in multidimensional space under a so called approximation-elimination framework. The algorithm is based on a new approximation procedure which selects codevectors for distance computation in the close proximity of the test vector and eliminates codevectors using the triangle inequality based elimination. The algorithm is studied in the context of vector quantization of speech and compared with related algorithms proposed earlier. It is shown to be more efficient in terms of reducing the main search complexity, overhead costs and storage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient approximation-elimination algorithm for fast nearest-neighbour search based on a spherical distance coordinate formulation

Ramasubramanian, V. and K.K. Paliwal, An efficient approximation-elimination algorithm for fast nearest-neighbour search based on a spherical distance coordinate formulation, Pattern Recognition Letters 13 (1992) 471-480. An efficient approximation-elimination search algorithm for fast nearest-neighbour search is proposed based on a spherical distance coordinate formuTation, where a vector in K...

متن کامل

Fast nearest-neighbor search algorithms based on approximation-elimination search

In this paper, we provide an overview of fast nearest-neighbor search algorithms based on an &approximation}elimination' framework under a class of elimination rules, namely, partial distance elimination, hypercube elimination and absolute-error-inequality elimination derived from approximations of Euclidean distance. Previous algorithms based on these elimination rules are reviewed in the cont...

متن کامل

HDIdx: High-dimensional indexing for efficient approximate nearest neighbor search

Fast Nearest Neighbor (NN) search is a fundamental challenge in large-scale data processing and analytics, particularly for analyzing multimedia contents which are often of high dimensionality. Instead of using exact NN search, extensive research efforts have been focusing on approximate NN search algorithms. In this work, we present “HDIdx”, an efficient high-dimensional indexing library for f...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

A Fast Nearest-Neighbor Algorithm Based on a Principal Axis Search Tree

A new fast nearest neighbor algorithm is described that uses principal component analysis to build an efficient search tree. At each node in the tree, the data set is partitioned along the direction of maximum variance. The search algorithm efficiently uses a depth-first search and a new elimination criterion. The new algorithm was compared to sixteen other fast nearest neighbor algorithms on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002